DOE PUBLIC WORKSHOP SILO 3 PATH FORWARD MAY 14, 1997

7:00 p.m.	Welcome/Opening Remarks	Gary Stegner
7:10 p.m.	Overview of Public Involvement and Decision-Making Process for Silo 3 Remediation	Terry Hagen
7:30 p.m.	Overview of Potential Technologies Available for Silo 3 Remediation	Don Paine
8:00 p.m.	Informal Question and Answer Ses	sion
8:45 p.m.	Review of Action Items/ Closing Remarks	Gary Stegner
9:00 p.m.	Meeting Concludes	

120° U-703

.

.

PUBLIC MEETINGS/AVAILABILITY SESSIONS FOR 1997 (some TBD)

FERNAI D A

January	February	March
7 CRO Meeting 11 Citizens Task Force 22 STCG 23 FRESH	4 CRO Meeting 12 IRT Availability Session 12, 13 Health Effects Subcommittee 26 IRT Public Briefing	4 CRO Meeting 13 CTF/FRESH & DOE/FDF 15 Citizens Task Force 18 STCG FRESH
April	May	June
1 CRO Meeting 3 FRESH 15 DOE Community Mtg. 22 DOE 10-Year Plan Mtg.	6 CRO Meeting 7 WM Subcommittee 7,8 Health Effects Subcommittee 10 Task Force 14 Silos Project Workshop 20 Joint Response 21 CP&T Mtg. 21 EM Subcommittee 22 FRESH 27 OU2/OU5 Workshop	3 Silos Project Workshop - Nevada 3 CRO Meeting 10 STCG TBD Silos Project Workshop TBD Recycling Methodology Worksho
July	August	September
1 CRO Meeting 9 Citizens Task Force 24 FRESH TBD STCG TBD Silos Project Workshop	5 CRO Meeting TBD Public Involvement Workshop	2 CRO Meeting 20 Citizens Task Force 25 FRESH TBD STCG
October	November	December
7 CRO Meeting TBD DOE Community Mtg.	4 CRO Meeting 15 Citizens Task Force 20 FRESH TBD STCG	2 CRO Meeting

SILO 3 PATH FORWARD - "STARTING POINT"

FERNALD

- Task Force recommendations specific to Silo 3
 - Separate Silo 3 treatment from Silos 1 and 2
 - Evaluate appropriate treatment technologies
- DOE/Regulators concur to consider alternative treatment of Silo 3
 - Silo 3 Alternative Treatment Evaluation Report used to focus discussions Not make decisions
- IRT recommendation specific to Silo 3
- Draft ACOE Value Engineering Study input
- Need to work Silo 3 path forward hand in hand with stakeholders
 - Treatment technology/performance criteria
 - Regulatory process to modify ROD (if required)
 - Stakeholders involvement in Silo 3 Request for Proposal

SILO 3 TECHNOLOGY IDENTIFICATION

ERNAID A

- Propose to use a streamlined approach similar to feasibility study (FS) methodology
- Establish performance requirements
- Identify and screen universe of stabilization technologies
 - Screen using FS criteria of implementability, effectiveness, and cost
 - Preliminary expectation is a number of potential technologies will be screened out
- More detailed evaluation of technologies passing screening phase
 - Broad use of "nine criteria"
- Propose series of workshops to accomplish the above

Graphics #4567, 2 5/97

SILO 3 ROD MODIFICATION PROCESS

ERNALD A

- Propose modified Explanation of Significant Difference (ESD) Process
- ESD will:
 - Document technical basis for moving from vitrification
 - Document treatment technology/performance criteria identification
- Stakeholder involvement will include identified comment period for Draft Final ESD
- DOE will respond in writing to all comments prior to finalization of ESD

PUBLIC INVOLVEMENT WITH SILO 3 RFP

FERNALD

- Stakeholder involvement will include identified comment period for Draft RFP
- DOE will respond in writing to all comments prior to issuance of RFP

SILO 3 SHORT TERM PATH FORWARD

FFRNAI D

200000

Approximate Time Line

Spring 1997

Summer 1997

Fall 1997

(Approximately 3 Months)
Public Consensus on Stabilization Technology/Performance Criteria

(Approximately 4 Months) Final Draft ESD

30 Days

Public Review

30 Days

Response to Comments

 \triangle Sign ESD

Develop Draft RFP (Includes Public Interaction)

Public/Vendor Review of Draft RFP 30 Days

60-90 Days

Address Comments

Graphics 4567B. 3 5/97

SILO 3 PATH FORWARD - "STARTING POINT"

FERNALD .

- Task Force recommendations specific to Silo 3
 - Separate Silo 3 treatment from Silos 1 and 2
 - Evaluate appropriate treatment technologies
- DOE/Regulators concur to consider alternative treatment of Silo 3
 - Silo 3 Alternative Treatment Evaluation Report used to focus discussions Not make decisions
- IRT recommendation specific to Silo 3
- Draft ACOE Value Engineering Study input
- Need to work Silo 3 path forward hand in hand with stakeholders
 - Treatment technology/performance criteria
 - Regulatory process to modify ROD (if required)
 - Stakeholders involvement in Silo 3 Request for Proposal

SILO 3 TECHNOLOGY IDENTIFICATION

ERNALD A

- Propose to use a streamlined approach similar to feasibility study (FS) methodology
- Establish performance requirements
- Identify and screen universe of stabilization technologies
 - Screen using FS criteria of implementability, effectiveness, and cost
 - Preliminary expectation is a number of potential technologies will be screened out
- More detailed evaluation of technologies passing screening phase
 - Broad use of "nine criteria"
- Propose series of workshops to accomplish the above

SILO 3 ROD MODIFICATION PROCESS

FRNALD A

- Propose modified Explanation of Significant Difference (ESD) Process
- ESD will:
 - Document technical basis for moving from vitrification
 - Document treatment technology/performance criteria identification
- Stakeholder involvement will include identified comment period for Draft Final ESD
- DOE will respond in writing to all comments prior to finalization of ESD

PUBLIC INVOLVEMENT WITH SILO 3 RFP

ERNALD A

- Stakeholder involvement will include identified comment period for Draft RFP
- DOE will respond in writing to all comments prior to issuance of RFP

SILO 3 SHORT TERM PATH FORWARD

FERNALD

Approximate Time Line

Spring 1997

Summer 1997

Fall 1997

(Approximately 3 Months)

Public Consensus on Stabilization Technology/Performance Criteria

(Approximately 4 Months) Final Draft ESD

30 Days

Public Review

30 Days

Response to Comments

 \triangle Sign ESD

Develop Draft RFP (Includes Public Interaction)

Public/Vendor Review of Draft RFP 30 Days

60-90 Days

Address Comments

FERNALD

Silo 3

TREATMENT TECHNOLOGY EVALUATION

Public Workshop

May 14, 1997

FERNALD

Silo 3 Waste Physical, Chemical, and Radiological Characteristics

Physical	Chemical	Radiological
Pretreated by Calcination at 600°C to stabilize for storage	Metal Oxides	Thorium - 230
Powdery; Dry 5088 yd ³	High Sulfates and Phosphates High Aluminum, Calcium, Magnesium, Sodium and Iron	Alpha Emitter Airborne Inhalation Concern
Homogeneous	Inorganics TCLP Limit - Chromium 12 mg/L 5 mg/L - Selenium 12 mg/L 1 mg/L - Cadmium 6 mg/L 1 mg/L - Arsenic 42 mg/L 5 mg/L	Can be Contact Handled - No Shielding Required

EERNAI D

Silo 3 Waste Form Criteria

- Chemically bind hazardous characteristic constituents below Toxicity Characteristic Leach Procedure (TCLP) limits
- Physically bind in a solid waste form to eliminate airborne dispersibility of constituents of concern during handling, transport, and disposal
- Dry waste form to meet free liquids criteria for transport and disposal
- Maintain the radionuclide concentrations below the disposal site waste acceptance criteria limits

FERNALD

Silo 3 Waste Applicable Remediation Technologies

- "Feasibility Study Report for Operable Unit 4", 1994
- Literature from the "Encyclopedia of Technologies", 1992
- U.S. EPA "Stabilization/Solidification Processes for Mixed Waste", 1996
- Literature Survey of "Innovative Technologies for Hazardous Waste Site Remediation", 1987-1991
- U.S. EPA "Fifth Forum on Innovative Hazardous Waste Treatment Technologies: Domestic and International", 1994
- U.S. EPA "Remediation Technologies Screening Matrix and Reference Guide", 1993
- U.S. NRC "Workshop on Cement Stabilization of Low-Level Radioactive Waste", 1989

FERNALD A

EPA Remediation Technologies, Screening Matrix Soils, Sediments, Sludges

Physical/Chemical Processes	Thermal Processes	Other Processes 1. Excavation and Off-Site Disposal	
1. Solidification/Stabilization	1. High Temperature Thermal Desorption		
Full-Scale/Conventional	Full-Scale/Innovative	Full-Scale/Conventional	
2. Solvent Extraction Full-Scale/Innovative	2. Vitrification Full-Scale/Innovative		
3. Chemical Reduction/Oxidation Full-Scale/Innovative			

FRNALD.

Silo 3 Waste Technologies Available

<u>Technology</u>	RI/FS	<u>IRT</u>
 Asphalt (Bitumen) Stabilization 	X	X
 Cement Stabilization/Solidification 	X	X
 Polymer (Micro) Encapsulation 	X	X
Vitrification	X	X
• Ceramics		X
Ceramic Silicon Foam		X
 Macro Encapsulation 		X
 Metal Matrix (Ceramet) 	,	X
Molten Metal Technology		X
 Thermal Setting (Epoxy) Resins 		X
Sulfur/Polymer Encapsulation		X
Phoenix Ash Stabilization		

FERNALD

Technology/Process Screening Factors

Effectiveness

- Mobility of constituents of concern
- Volume increase/decrease
- Waste Acceptance Criteria for characteristic metals
- Long-term effectiveness/permanence

Implementability

- Commercial availability
- Secondary waste produced
- Pretreatment required
- Processing throughput
- System reliability/maintainability

- Overall cost
- Capital or Operation, Maintenance, and Disposal Cost Intensive

FFRNALD A

000020

Asphalt (Bitumen) Stabilization

Process Description

Asphalt Stabilization is a process that physically binds the waste in a solid matrix. The process involves mixing solid waste in a liquid asphalt which, upon cooling, hardens into an elastic solid. This thermal process is encapsulation with no chemical binding of constituents of concern.

Effectiveness

- Reduces mobility of constituents of concern through physical binding.
- Volume increase.
- May not meet waste acceptance criteria for characteristic metals.
- Acceptable long-term effectiveness if disposed in an arid environment.

Implementability

- Mature technology; popular prior to land disposal requirements; rejected by power industry.
- Produces secondary waste volitile gases.
- No pretreatment required.
- Large processing throughput achievable; flammability issue.
- More complex facility and equipment requirements than cement.
- Operator-friendly; easily maintained.

- Overall cost medium.
- Majority of cost associated with processing, packaging, shipping, and disposal.

FERNALD .

Cement Stabilization/Solidification

Process Description

The most widely used solidification/stabilization process for low-level mixed waste. Best demonstrated available technology for hazardous characteristic constituents. Chemically and physically binds costituents of concern. Waste is mixed with a variety of cement and chemical additive formulations. It is a nonthermal process requiring water as an activating agent for chemical binding.

Effectiveness

- Demonstrated ability to reduce mobility of Silo 3 hazardous constituents.
- Volume increase 10% to 500%: treatability tests shows 20% increase in Silo 3 waste volume.
- Demonstrated ability to meet waste acceptance criteria for Silo 3 characteristic metals.
- Acceptable long-term effectiveness if disposed in arid environments (NTS and Envirocare).

Implementability

- Mature technology: numerous commercial vendors
- Produces secondary waste HEPA filters.
- No pretreatment processes required.
- Large processing throughput achievable.
- Facility and equipment requirements are not complex.
- Operator-friendly; easily maintained.

Cost

- Overall cost medium.
- Majority of cost associated with processing, packaging, shipping, and disposal.

Graphics 4567A. 10 5/97

අ

SILOS PROJECT

FERNALD

Polymer (Micro) Encapsulation

Process Description

Polymer (Micro) Encapsulation is a thermal process which physically binds the waste in a thermoplastic polymer. Polyethylene is melted (100°C) and mixed with a dry waste using a commercially available extruder. The molten mixture is poured into the final disposal container where solidification occurs as the mixture cools.

Effectiveness

- Reduces mobility of constituents of concern through physical binding.
- Volume increase or decrease unknown.
- Requires development to ensure meeting waste acceptance criteria for characteristic metals.
- Would provide an acceptable long-term waste form for disposal.

Implementability

- Developmental technology; commercially available at Envirocare.
- Produces secondary waste volitile gases.
- Pretreatment required; may require drying.
- Small-scale; large processing throughput achievable.
- More complex facility and equipment requirements than cement.
- Operator-friendly; easily maintained.

Cost

- Overall cost medium.
- Majority of cost associated with processing, packaging, shipping, and disposal.

Graphics 4567A, 9 5/97

FFRNAI D

Sulfur/Polymer Encapsulation

Process Description

Sulfer Polymer Cement (SPC) is a process that produces a solid waste form where the constituents of concern are encapsulated in a cement, sulfur, polymer matrix. The sulfer provides a highly corrosion resistant cement while the polymer encapsulates the constituents of concern. SPC is a thermal process (135°C) requiring no chemical activation agents.

Effectiveness

- Reduces mobility of constituents of concern through physical binding.
- Volume increase.
- May require additives to chemically bind characteristic metals.
- Acceptable long-term effectiveness if disposed in arid environments (NTS).

Implementability

- Development technology; SEG has small-scale facility.
- Produces secondary waste SO, and H₂S.
- Pretreatment required moisture sensitive.
- Thermal process; computerized process control; flammability issues (Flash point 177°C).
- More complex facility and equipment requirements than cement; molten sulfur handling.
- Operator-unfriendly; maintainability more complex than cement.

Cost

- Overall cost medium.
- Majority of cost associated with processing, packaging, shipping, and disposal.

Graphics 4567A. 11 5/97

FERNALD

Ceramics

Process Description

Ceramics is a process where the Silo 3 waste is mixed with dry ceramic formers and poured into a mold. The mold is then placed into an oven and heated, potentially under pressure, and then allowed to cool. Chemically bonded phosphate ceramics are used to produce a ceramic without oven heating. Producing magnesium phosphate creates an exothermic reaction that provides the heat required to form the ceramic.

Effectiveness

- Reduces mobility of constituents of concern through physical binding.
- Volume increase or decrease unknown.
- Development required to meet waste acceptance criteria for characteristic metals
- Would provide an acceptable long-term waste form for disposal.

Implementability

- Developmental technology INEL, Clemson University, Rocky Flats, Envirocare.
- Produces secondary waste volitile gases.
- Pretreatment may be required; mechanical compression or drying.
- Processing throughput unknown.
- More complex facility and equipment requirements than cement; high temperature operations
- Operator reliability/maintainability unknown.

Cost

- Overall cost medium.
- High capital cost.

Graphics 4567A. 12 5/97

FERNALD A

Metal Matrix (Ceramet)

Process Description

Metal Matrix (Ceramet) is a process where the Silo 3 waste is mixed with ceramic particles and metal (aluminum), pretreated with a proprietary treatment, melted, and then poured into a disposal container.

Effectiveness

- Reduces mobility of constituents of concern through physical binding.
- Volume increase or decrease unknown.
- Development required to meet waste acceptance criteria for characteristic metals.
- Would provide an acceptable long-term waste form for disposal.

Implementability

- Developmental technology, commercial availability unknown.
- Produces secondary waste volitile gases.
- Pretreatment required proprietary process.
- Processing throughput limited.
- More complex facility and equipment requirements than cement; high temperature operation.
- System reliability/maintainability unknown.

- Overall cost high.
- High capital cost.

FERNALD .

Molten Metal Technology

Process Description

Molten Metal Technology involves the injection of the Silo 3 waste into a bath of molten metal, resulting in volume reduction through off-gasing of sulfates, carbonates, and phosphates, produces a metallic waste form and a secondary slag waste. This process has been used for volume reduction of nuclear reactor spent resins.

Effectiveness

- Reduces mobility of constituents of concern.
- Volume increase.
- Development required to meet waste acceptance criteria for characteristic metals.
- Would provide an acceptable long-term waste form for disposal.

Implementability

- Developmental technology.
- Produces secondary waste SO,, CO,, PO,.
- Pretreatment required waste sizing requirement.
- Processing throughput limited.
- Facility and equipment requirements similar to vitrification.
- System reliability/maintainability similar to vitrification.

Cost

- Overall cost high.
- High capital cost.

Graphics 4567A. 19 5/97

FFRNAI D

Phoenix Ash Technology

Process Description

Phoenix Ash Technology involves the conversion of a mixture of fly ash, volcanic ash, or kiln dust and Silo 3 waste into a solid form, typically a brick. This stabilization process depends on high pH to stabilize characteristic metals.

Effectiveness

- Reduces mobility of constituents of concern.
- Potential volume decrease.
- Development required to meet waste acceptance criteria for characteristic metals.
- Would provide an acceptable long-term waste form for disposal.

Implementability

- Development technology commercially available; one equipment vendor.
- Secondary waste produced HEPA filters.
- Pretreatment required mechanical compression; particle size-reduction and pretreatment for chromium and cadmium.
- Processing throughput limited.
- Facility and equipment requirements similar to cementation.
- System reliability/maintainability similar to cementation except high pressures require more maintenance.

Cost

- Overall cost medium.
- Capital and O&M cost similar to cementation.

Graphics 4567A. 14 5/97

EDNALD

Thermal Setting (Epoxy) Resins

Process Description

Thermal Setting (Epoxy) Resins technologies are similar to polymer encapsulation processes. This is a thermal process which physically binds the waste in a polymer matrix.

Effectiveness

- Reduces mobility of constituents of concern through physical binding.
- Volume increase or decrease unknown.
- Requires development to ensure meeting waste acceptance criteria for characteristic metals.
- Would provide an acceptable long-term waste form for disposal.

Implementability

- Developmental technology.
- Produces secondary waste volitile gases.
- Pretreatment required; may require drying.
- Processing throughput unknown.
- More complex facility and equipment requirements than cement.
- System reliability/maintainability similar to polymer encapsulation.

- Overall cost medium.
- Majority of cost associated with processing, packaging, shipping, and disposal.

FERNALD

Ceramic Silicon Foam

Process Description

Ceramic Silicon foam is an encapsulation process utilizing Dimethyl Silicon.

Effectiveness

- Reduces mobility of constituents of concern through physical binding.
- Volume increase less volume increase than cementation.
- Requires development to ensure meeting waste acceptance criteria for characteristic metals.
- Would provide an acceptable long-term waste form for disposal.

<u>Implementability</u>

- Developmental technology.
- Produces secondary waste volitile gases.
- Pretreatment required; may require drying.
- Processing throughput unknown.
- More complex facility and equipment requirements than cement.
- System reliability/maintainability similar to polymer encapsulation.

- Overall cost medium.
- Majority of cost associated with processing, packaging, shipping, and disposal.

SILOS PROJECT

FERNALD

Macro Encapsulation

Process Description

Macro Encapsulation is a process typically used for discrete objects that cannot be sizereduced, which consists of placing the objects in a disposal container and pouring the encapsulation material over the object.

Effectiveness

- Reduces mobility of constituents of concern through physical binding.
- Volume increase.
- Would not meet waste acceptance criteria for characteristic metals.
- Would not provide an acceptable long-term waste form for disposal.

Implementability

- Mature technology; not applicable for Silo 3 waste.
- Produces no secondary waste.
- No pretreatment required.
- Large processing throughput achievable.
- Facility and equipment requirements are not complex.
- Operator-friendly; easily maintained.

- Overall cost medium.
- Majority of cost associated with processing, packaging, shipping, and disposal.

EEDNAI D

Proposed technologies to carry forward for detailed evaluation

- Cement Stabilization/Solidification
- Polymer (Micro) Encapsulation
- Sulfer/Polymer Encapsulation